Dynamics and Stability of q-Fractional Order Pantograph Equations With Nonlocal Condition
نویسندگان
چکیده
منابع مشابه
Study on stability analysis of distributed order fractional differential equations with a new approach
The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...
متن کاملIntegro-differential Equations of Fractional Order with Nonlocal Fractional Boundary Conditions Associated with Financial Asset Model
In this article, we discuss the existence of solutions for a boundaryvalue problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented. 1. Formulation ...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملFractional decay bounds for nonlocal zero order heat equations
In this paper we obtain bounds for the decay rate for solutions to the nonlocal problem ∂tu(t, x) = R n J(x, y)[u(t, y) − u(t, x)]dy. Here we deal with bounded kernels J but with polynomial tails, that is, we assume a lower bound of the form J(x, y) ≥ c1|x − y| −(n+2σ) , for |x − y| > c2. Our estimates takes the form u(t) L q (R n) ≤ Ct − n 2σ (1− 1 q) for t large.
متن کاملChaotic dynamics and synchronization of fractional order PMSM system
In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme is simple and flexible, and it is suitable both fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Statistics
سال: 2018
ISSN: 1549-3644
DOI: 10.3844/jmssp.2018.64.71